Adversarial Pattern Classification Using Multiple Classifiers and Randomisation
نویسندگان
چکیده
In many security applications a pattern recognition system faces an adversarial classification problem, in which an intelligent, adaptive adversary modifies patterns to evade the classifier. Several strategies have been recently proposed to make a classifier harder to evade, but they are based only on qualitative and intuitive arguments. In this work, we consider a strategy consisting in hiding information about the classifier to the adversary through the introduction of some randomness in the decision function. We focus on an implementation of this strategy in a multiple classifier system, which is a classification architecture widely used in security applications. We provide a formal support to this strategy, based on an analytical framework for adversarial classification problems recently proposed by other authors, and give an experimental evaluation on a spam filtering task to illustrate our findings.
منابع مشابه
Multiple classifier systems for robust classifier design in adversarial environments
Pattern recognition systems are increasingly being used in adversarial environments like network intrusion detection, spam filtering and biometric authentication and verification systems, in which an adversary may adaptively manipulate data to make a classifier ineffective. Current theory and design methods of pattern recognition systems do not take into account the adversarial nature of such k...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملSecurity Evaluation of Pattern Classifiers under Attack
Pattern classification systems are commonly used in adversarial applications, like biometric authentication, network intrusion detection, and spam filtering, in which data can be purposely manipulated by humans to undermine their operation. As this adversarial scenario is not taken into account by classical design methods, pattern classification systems may exhibit vulnerabilities,whose exploit...
متن کاملSecurity Evaluation of Pattern Classifiers in Adversarial Environments
Pattern classification systems are commonly used in adversarial applications, like biometric authentication, network intrusion detection, and spam filtering, in which data can be purposely manipulated by humans to undermine their operation. As this adversarial scenario is not taken into account by classical design methods, pattern classification systems may exhibit vulnerabilities, whose exploi...
متن کاملIdentifying Security Evaluation of Pattern Classifiers Under attack
Pattern classification is a branch of machine learning that focuses on recognition of patterns and regularities in data. In adversarial applications like biometric authentication, spam filtering, network intrusion detection the pattern classification systems are used. As this adversarial scenario is not taken into account by classical design methods, pattern classification systems may exhibit v...
متن کامل